# Updates on Invasive Species Research

Christopher Evans Extension Forester





# Invasive Species Projects

- Foliar treatments of burning bush
- Grass-specific herbicide and cover crop trial on Japanese stiltgrass
- Stem injection timing, method, herbicide, and rate trial on sugar maple



# Study species

# Winged burning bush (Euonymus alatus)

- Tardily deciduous shrub
- Aggressive invader in many locations
  - Shade tolerant
- Banned for sale in several states
- Very little experimental research on management techniques



# Research Objectives

- Test effectiveness of different herbicides and rates as a foliar applied herbicide on winged burning bush
  - Defoliation
  - Mortality
    - 2 years after treatment



# Study Design\* \*In partnership with Bayer U.S.

- Individual Plant Treatment (9 replicates for each treatment type)
- Late summer of 2019 treatment
  - % Defoliation measured at 1 and 2 years after treatment (YAT)
  - Mortality calculated at end of study (Mortality = 100% defoliation at 2YAT)

#### **Treatments**

- Cropsmart (Glyphosate)
  - 2%
- Garlon 3A (Triclopyr)
  - (3%)
- Method 240SL (Aminocyclopyrachlor)
  - (0.25%)
  - (0.5%)
  - (1%)
- Milestone (Aminopyralid)
  - (0.33%)
- Untreated Control

# Burning Bush % Defoliation at 1- and 2- years after treatment





# Burning Bush Mortality at 2-Years After Treatment (Using 100% and >90% defoliation to denote mortality)



# **Burning Bush Research Summary**

- None of the foliar treatments tested were successful at controlling burning bush, measured at 2-years after treatment
- Strong initial defoliation and at 1-year after treatment but plants recovered for most treatments by 2-years after treatment

### Management Implications

- Currently do not have a great recommended foliar treatment, but 2% glyphosate seems to wok best
- Observationally, both basal bark (with ester version of triclopyr) and cut stump (with triclopyr or glyphosate) are effective but still need to test them experimentally.

Can light rates of grass-specific herbicide effectively control stiltgrass?

Can the use of native cover crops in combination with herbicide reduce stiltgrass invasion following large-scale brush removal

# **Study Species**

- Japanese stiltgrass
  - Microstegium vimineum
- Shade-tolerant, annual, warm-season grass
- Disturbance-driven colonization of new locations







#### Conventional recommendations

- Grass-specific herbicides
  - Clethodim 2e @ 0.5-0.66% v/v spot spray rate
- Observational information that lower rates may still be effective
  - What about impacts to other vegetation?

# Study #1 – Herbicide rate trial

- 2m x 2m plots
  - Heavily invaded by stiltgrass
- Treated using 3 rates of Clethodim 2e with NIS (June 10, 2022)
  - Untreated
  - 0.1%
  - 0.2%
  - 0.33%
- 9 replicates per treatment
  - Recorded visual percent cover every two weeks for total of 55 days









#### **Percent Cover of Stiltgrass over time (days after treatment)**



# % Cover of Stiltgrass and other vegetation at 55 DAT under different treatments



**V/V Treatment Rates using Clethodim 2e** 

■ Stiltgrass ■ Other vegetation

# Large-scale brush removal









### Large-scale brush removal

- Heavy disturbance
- Often herbaceous invasive species rapidly invade

Can the use of native cover crops in combination with herbicide reduce stiltgrass invasion following large-scale brush removal

# Study site

- Dixon Springs Agricultural Center
  - Pope County, IL
- 30-40 YO tree plantings heavily invaded by Autumn olive, bush honeysuckle, and tree seedlings
  - Stiltgrass present on site, but heavy infestations immediately adjacent as well
- Site was cleared in winter of 2020/2021 using a forestry mulcher
  - Stump sprouts of woody invaders treated using triclopyr herbicide in 2021 and 2022
- Mix of native shade-tolerant grass species was sown into area
  - Virginia wild rye primarily







# Study Design

- 2m x 2m plots within cleared area
- Mix of native rye and stiltgrass
- Treatments made in early June
  - Untreated
  - 0.1% Clethodim
  - 0.2% Clethodim
  - 0.33% Clethodim
- Visual estimates of % cover measured every two week for 55 days
  - Plans to follow up in year 2 to measure survivorship of native grasses





#### Notes

- Native rye was impacted by treatment
  - Die-back of the tops of the plants noticeable
  - Did it lead to mortality, or will they bounce back?
    - Year 2 data will help determine ultimate utility of treatment
- Stiltgrass was clearly impacted by treatments but not as drastically as in the stiltgrass-only study
  - Taller native grasses intercepted herbicide, leading to less contact with stiltgrass?

### Stiltgrass Research Discussion

- Very light rates of the grass-specific herbicide Clethodim 2e appear successful at treating dense stands of stiltgrass while maintaining other vegetation.
  - 0.2% and 0.33% rates are very effective
  - 0.1% rate was not as effective on stiltgrass
- Planting native wild ryes as a cover crop beneficial to reducing stiltgrass impact
  - Best used in combination with light rate grass-specific herbicide treatment.
  - Year 2 data collection will help determine long-term benefit of cover crop and herbicide treatments

How does herbicide, rate, and timing impact stem injection treatments for woody plants?



## Stem Injection Applications

- Small site of damage to the stem of the woody plant
  - Direct application of concentrated herbicide at damage site
  - Reduces need for herbicide to be taken up through the bark
- Girdle or Frill
- Hack and Squirt
- Drill and Fill



## Girdle or Frill

- Cut completely around stem deep enough to expose inner bark and sapwood
- Directed spray of herbicide into cut
- Girdle cuts should be within 2feet of the ground and around 1" deep into wood past the bark
  - Works best on larger stems



## Hack and Squirt

- Downward chops through bark to expose inner bark
- Direct application of herbicide into wound site
  - Leaving hatchet in cut and bending it down will help hold open cut and improve herbicide uptake
  - Downward angle of cut helps keep herbicide in





Figure 3. Hack-and-squirt application technique. Credits: Stephen Enloe, UF/IFAS

### **Drill and Fill**

- Similar to hack and squirt but use a large diameter drill bit instead (3/8"-1/2") at a downward angle 1.5-2" deep into wood
- Apply approximately 1 ml of herbicide in each hole (# of holes depends upon diameter of stem)





## **Stem Injection Considerations**

- Very simple and portable methods
- Very little chance of non-target impacts
- Leaves plants standing (no slash issue)
- Calibrate hand-pump sprayers as they vary greatly in output

## **Study Objectives**

Evaluate three different herbicides at different rates, different timing and different injection methods for effectiveness on treating small sugar maples in an oak forest

- Glyphosate, Triclopyr, and Aminocyclopyrachlor
- Hack 'n' squirt and Drill 'n' fill
- September and December treatment dates

## Study Design

## Individual plant treatments (9 replicates per treatment)

- Untreated
- Garlon 3A (triclopyr)
  - - H&S 1/2 ml undiluted every 3-4" circumference (label instructions)
- Cropsmart (Glyphosate)
  - H&S 1ml every 2" DBH (label instructions)
- Method (Aminocyclopyrachlor)
  - - D&F (1 ml) every 2" DBH (D&F and H&S)
  - - 1 hole (1 ml) per stem (D&F and H&S)
  - - ½ ml, 2 per stem (D&F and H&S)

## Study Design

- Initial treatment was December 2019
- Sap running excessively that day
- Potentially pushing herbicide out of the injection sites
- Decided to repeat the study the next year with earlier treatment date (September 2020)
- Measured % defoliation at 1- and 2- years after treatment
  - Rated mortality (100% defoliation 2-years after treatment)



#### **Defoliation 1- and 2- YAT December Treatment**



### **Defoliation 1- and 2- YAT September Treatment**



### Mortality at 2-YAT for December '19 and September '20 Treatments



**■** Dec 19 **■** Sep 20

## **Timing Comparison**

- % Defoliation and mortality was lower for every herbicide treatment except triclopyr H&S
- % Defoliation after 2 years across all herbicide treatments
  - 28% for December
  - 88% for September
- Mortality across all herbicide treatments
  - 18% for December
  - 83% for September.
- Mortality for all METHOD treatments
  - 15% for December
  - 95% for September



# Take home message on stem injections

- Timing really matters for some species
  - Sap bleeders
- Drill & Fill equaled or exceeded Hack & Squirt for every treatment tested in both timings
  - Suitable (and potentially safer) application technique
- Method 240SL (Aminocyclopyrachlor) is very effective controlling maple via stem injections when the timing is right
  - Did see some level of non-target impacts to adjacent vegetation but it was minimal
    - Leaf curling, slight canopy dieback

